An efficient semi-implicit immersed boundary method for the Navier-Stokes equations

نویسندگان

  • Thomas Y. Hou
  • Zuoqiang Shi
چکیده

The Immersed Boundary method is one of the most useful computational methods in studying fluid structure interaction. On the other hand, the Immersed Boundary method is also known to require small time steps to maintain stability when solved with an explicit method. Many implicit or approximately implicit methods have been proposed in the literature to remove this severe time step stability constraint, but none of them give satisfactory performance. In this paper, we propose an efficient semiimplicit scheme to remove this stiffness from the Immersed Boundary method for the Navier-Stokes equations. The construction of our semi-implicit scheme consists of two steps. First, we obtain a semi-implicit discretization which is proved to be unconditionally stable. This unconditionally stable semi-implicit scheme is still quite expensive to implement in practice. Next, we apply the Small Scale Decomposition to the unconditionally stable semi-implicit scheme to construct our efficient semi-implicit scheme. Unlike other implicit or semi-implicit schemes proposed in the literature, our semi-implicit scheme can be solved explicitly in the spectral space. Thus the computational cost of our semi-implicit schemes is comparable to that of an explicit scheme. Our extensive numerical experiments show that our semi-implicit scheme has much better stability property than an explicit scheme. This offers a substantial computational saving in using the Immersed Boundary method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removing the Stiffness of Elastic Force from the Immersed Boundary Method for the 2D Stokes Equations

The Immersed Boundary method has evolved into one of the most useful computational methods in studying fluid structure interaction. On the other hand, the Immersed Boundary method is also known to suffer from a severe timestep stability restriction when using an explicit time discretization. In this paper, we propose several efficient semiimplicit schemes to remove this stiffness from the Immer...

متن کامل

A semi-implicit augmented IIM for Navier-Stokes equations with open and traction boundary conditions

In this paper, a new Navier-Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open and traction boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For this type of problem, the project...

متن کامل

Partially implicit motion of a sharp interface in Navier-Stokes flow

We develop a numerical method for the coupled motion of Navier-Stokes flow with an elastic interface of zero thickness which exerts tension and bending forces on the fluid. The interface motion is made partially implicit by approximating a backward Euler step in the high wavenumbers as in the small scale decomposition method of Hou, Lowengrub and Shelley. This modified step is combined with the...

متن کامل

Stability Results and Algorithmic Strategies for the Finite Element Approach to the Immersed Boundary Method

The immersed boundary method is both a mathematical formulation and a numerical method for the study of fluid structure interactions. Many numerical schemes have been introduced to reduce the difficulties related to the non-linear coupling between the structure and the fluid evolution; however numerical instabilities arise when explicit or semi-implicit methods are considered. In this work we p...

متن کامل

The immersed boundary method for advection-electrodiffusion with implicit timestepping and local mesh refinement

We describe an immersed boundary method for problems of fluid-solute-structure interaction. The numerical scheme employs linearly implicit timestepping, allowing for the stable use of timesteps that are substantially larger than those permitted by an explicit method, and local mesh refinement, making it feasible to resolve the steep gradients associated with the space charge layers as well as t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008